The Crystal Structure of Diphenyl Diselenide

By Richard E. Marsh*
Department of Chemistry, University of California at Los Angeles, California, U.S.A.

(Received 10 December 1951)

Abstract

The crystal structure of diphenyl diselenide has been determined by analysis of rotation and Weissenberg photographs about the b and c axes. The space group is $D_{2}^{4}-P 2_{1} 2_{1} 2_{1}$; the unit cell dimensions are: $a \xlongequal[=]{24 \cdot 07}, b=8 \cdot 27, c=5 \cdot 64 \AA$. There are four molecules in the unit cell. Positional parameters for the selenium and carbon atoms were assigned from Fourier projections on (001) and (010); the selenium parameters were then refined by least-squares calculations. The observed Se-Se distance is $2.29 \pm 0.01 \AA$, which is $0.05 \AA$ shorter than twice the normal singlebond radius for selenium. The selenium-carbon distances are close to the predicted value of $1.94 \AA$.

Introduction

The crystal-structure investigation of diphenyl diselenide was undertaken as part of a program of studies on organoselenium compounds initiated by McCullough in 1940. Structures previously reported include those of diarylselenium dihalides (McCullough \& Hamburger, 1941; McCullough \& Hamburger, 1942; McCullough \& Marsh, 1950a), triphenylselenonium chloride (McCullough \& Marsh, 1950b), and 1,4diselenane (Marsh \& McCullough, 1951); in these compounds the selenium-carbon distances were found to vary from 1.94 to $2.01 \AA$. The current value for the normal single-bond radius of selenium-1.17 \AA-was assigned from the selenium-selenium distance found in elementary hexagonal selenium (Pauling, 1948, p. 164) and recently confirmed in the crystal-structure investigation of α-monoclinic selenium (Burbank, 1951). The present study of diphenyl diselenide was undertaken in order to determine the seleniumselenium distance in an organic molecule, giving a check on the single-bond radius, as well as to obtain further information on selenium-carbon distances and selenium bond angles.

Experimental

A sample of diphenyl diselenide, which was prepared by Dr Tod Campbell, was recrystallized from ethylene chloride; the resulting yellow needles were elongated in the c direction. Rotation as well as zero- and firstlayer Weissenberg photographs about the b and c axes were prepared, using unfiltered copper X-radiation. Measurements on these photographs indicated an orthorhombic unit cell with the following cell dimensions (using $\mathrm{Cu} K \alpha=1 \cdot 5418 \AA$):
$a=24.07 \pm 0.05, b=8.27 \pm 0.02, c=5.64 \pm 0.02 \AA$.

* Present address: Chemistry Department, California Institute of Technology, Pasadena, California, U.S.A.

These values are in fair agreement with those reported by Egartner, Halla \& Schacherl (1932):

$$
\begin{gathered}
a=23 \cdot 70 \pm 0 \cdot 15, \quad b=8 \cdot 255 \pm 0 \cdot 005, \\
c=5 \cdot 645 \pm 0 \cdot 005 \text { (kX.), }
\end{gathered}
$$

Absent reflections are $h 00$ with h odd, $0 k 0$ with k odd, and $00 l$ with l odd; the space group is thus $D_{2}^{4}-P 2_{1} 2_{1} 2_{1}$, which has fourfold general positions. An assumption of four molecules of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Se}_{2}$ per unit cell leads to a calculated density of $1.84 \mathrm{~g} . \mathrm{cm} .^{-3}$; the density observed by Egartner, Halla \& Schacherl is 1.782 g.cm. ${ }^{-3}$. Although this space group possesses no center of symmetry, projections of the structure on the three crystallographic faces are centro-symmetric. The general atomic coordinates (with the origin placed on the axis of symmetry of the (001) projection) are:

$$
(x, y, z) ;\left(\bar{x}, \bar{y}, \frac{1}{2}+z\right) ;\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z\right) ;\left(\frac{1}{2}-x, \frac{1}{2}+y, \bar{z}\right) .
$$

The cell dimensions indicated that projections along the b and c axes might show good resolution of the molecules, and it was decided to undertake the structure investigation using only zero-layer Weissenberg data of the type $h 0 l$ and $h k 0$. For these reflections, it is necessary only to determine the signs of the structure factors, the phase angles being either 0 or 180°. Intensity data were collected by visual comparison with a calibrated strip, averaging the readings obtained from four separate photographs for each zone. Of these four photographs, two were prepared from the same exposure, and a film factor of 3.7 was used to relate their intensities. No correction for absorption was considered necessary.

Determination of the structure

The intensities of all observed reflections were corrected for Lorentz and polarization effects, and the resultant F^{2} 's were used to construct partial Patterson projections on (001) and (010). The resultant maxima, which correspond to $\mathrm{Se}-\mathrm{Se}$ interactions, indicated

Fig. l. Fourier projections of the structure on (001). Contours are drawn at intervals of approximately 2 e. A^{-2} for the carbon atoms and $8 \mathrm{e} . \AA^{-2}$ for the selenium atoms, beginning with the 1 -electron contour.

Fig. 2. Fourier projections of the structure on (010). Contours are drawn at intervals of approximately 2 e. \AA^{-2} for the carbon atoms and 8 e. \AA^{-2} for the selenium atoms, beginning with the 1 -electron contour.
preliminary parameters for the selenium atoms. These parameters were used to assign signs to the F values for all observed reflections, and series of Fourier refinements, including the carbon contributions, were undertaken. The third and final projection on (001) is shown in Fig. 1, and the second and final projection on (010) in Fig. 2. Summations were calculated at intervals of $\frac{1}{10} a(0 \cdot 24 \AA),{ }_{\frac{1}{6} 6}^{6} b(0.23 \AA)$, and $\frac{1}{36} c$ ($0 \cdot 16 \AA$).
The centers of the peaks representing the selenium atoms were determined by fitting Gaussian curves to the nine electron-density points surrounding the peaks (Carpenter \& Donohue, 1950); these parameters were refined by least-squares calculations using all observed $h 0 l$ and $h k 0$ data. The F_{o} and F_{c} values were adjusted by empirical scale and temperature factors, and the observational equations were appropriately weighted according to the method of Hughes (1941). The results for the selenium atoms are summarized in Table 1.

The parameters for the carbon atoms were assigned with the assumptions that the benzene rings are regular, plane hexagons with edges of $1 \cdot 39 \AA$, and that the axis of each benzene ring is colinear with the corresponding selenium-carbon bond. These hexagons were adjusted by least-squares fits to the indicated peaks on the Fourier projection on (001). (The (010) projection was not used because of the poor resolution of the carbon atoms.) Thus, for each hexagon there are four positional parameters which were assigned

Table 1. Parameters of selenium atoms

Parameter	Fourier on (001)	$\begin{aligned} & \text { L.S. } \\ & (h k 0) \end{aligned}$	Fourier on (010)	L. S. (h0l)	Final
x	$0 \cdot 0964$	0.0961	0.0959	0.0964	0.0962
Se $\{y$	0.041	0.041	-		0.041
\underline{z}	-	-	0.075	0.075	0.075
$\int x$	0.0546	0.0545	0.0557*	$0 \cdot 0544$	0.0545
Se' ${ }^{\prime}\{y$	0.972	0.972	-	-	0.972
(z	-	-	0.428*	0.425	0.425

* Unreliable owing to proximity of benzene ring on this projection.
so as to give a best fit with the six x and y values observed for the maxima on the projection. One of the positional parameters was the $\mathrm{Se}-\mathrm{C}$ bonded distance; values for this distance of 1.965 and $1.891 \AA$ were obtained for the two benzene rings, and an average value of $1.93 \AA$ was finally used for both rings. The assigned carbon parameters are in good agreement with the observed maxima on the two projections.

Table 2. Atomic parameters in diphenyl diselenide

	Se	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
x	0.0962	0.1730	0.2057	0.2610	0.2835	0.2508	0.1955
y	0.411	0.079	0.178	0.206	0.134	0.035	0.007
z	0.075	0.157	0.016	0.075	0.276	0.417	0.358
x^{\prime}	0.0545	0.0683	0.0973	0.1072	0.0881	0.0591	0.0492
y^{\prime}	0.972	0.745	0.655	0.492	0.418	0.507	0.671
z^{\prime}	0.425	0.478	0.310	0.348	0.553	0.721	0.683

Table 3. Calculated and observed F values for diphenyl diselenide

h	F_{c}	F_{0}	h	F_{c}	F_{0}	h	F_{c}	F_{0}
	h00		18	46	55	23	-2	< 8
0	600	-	19	28	32	24	-24	22
2	104	57	20	84	84	25	2	<8
4	- 36	50	21	4	9	26	-25	23
6	-244	182	22	38	41	27	19	16
8	-124	116	23	-6	<9	28	-23	16
10	-13	15	24	-21	22			
12	10	12	25	-10	< 8			
14	-47	59	26	-60	47		$h 50$	
16	-11	< 8	27	17	10	1	48	46
18	58	69	28	-32	29	2	-45	46
20	109	109	29	6	<6	3	11	17
22	42	43	30	-2	6	4	9	16
24	-26	24				5	-11	16
26	-76	63				6	81	71
28	-35	32		h30		7	-46	47
30	4	< 5	1	143	113	8	90	74
			2	-65	66	9	-19	19
			3	20	22	10	-2	< 8
	h10		4	-12	13	11	-8	8
1	159	89	5	-61	68	12	-94	77
2	8	9	6	69	68	13	-11	9
3	- 2	9	7	-98	90	14	-89	77
4	50	50	8	79	88	15	15	17
5	-50	53	9	-31	30	16	-6	11
6	51	52	10	25	29	17	-5	< 9
7	-91	81	11	- 5	<7	18	48	37
8	19	24	12	-73	68	19	26	27
9	-54	61	13	-12	12	20	36	32
10	10	22	14	-83	73	21	20	18
11	24	32	15	-27	26	22	4	8
12	-55	57	16	-7	16	23	6	< 8
13	-29	36	17	15	20	24	-17	11
14	-26	30	18	24	20	25	-11	13
15	-21	23	19	53	55	26	7	6
16	-17	26	20	34	27	27	-17	14
17%	12	23	21	64	56			
18	20	19	22	1	<9			
19	68	76	23	11	<9		$h 60$	
20	11	13	24	-4	<8	0	50	
21	70	69	25	-34	35	1	-27	25
22	8	<9	26	4	8	2	-20	26
23	8	<9	27	-39	36	3	- 3	< 8
24	-3	< 9	28	17	14	4	12	13
25	-43	40	29	-17	14	5	34	36
26	-1	< 8				6	-20	23
27	-52	45		$h 40$		7	87	75
28	5	<7				8	-27	24
$\stackrel{29}{ }$	-13	14 <5		128 $-\quad 8$		9	-35	30
30	1	< 5	2	-86 -66	74	10	-19	19
			3	-8	<6	11	-32	31
	$h 20$		4	-14	20	12	-34	30
0	231	140	5	65	63	13	-90	71
1	-91	81	6	-78	69	14	-1	<9
2	105	94	7	83	76	15	-38	36
3	9	18	8	-52	53	16	16	14
4	-69	76	9	39	43	17	3	<9
5	2	8	10	-30	32	18	22	23
6	-114	110	11	-36	38	19	42	33
7	55	52	12	- 6	11	20	31	27
8	-71	70	13	-103	91	21	11	15
9	36	42	14	-16	16	22	0	<7
10	5	< 6	15	-43	43	23	$\stackrel{2}{9}$	<6
11	-35	40	16	28	32	24	-9	- 11
12	5	7	17	10	9	25	0	< 4
13	-59	66	18	30	33			
14	-47	47	19	33	30			
15	-26	27	20	51	45		$h 70$	
16	-4	<8	21	18	20	1	- 4	<9
17	24	26	22	7	<9	2	-15	14

Table 3 (cont.)

Table 3 (cont.)

h	F_{c}	F_{o}	h	F_{c}	F_{0}	h	F_{c}	F_{0}
6	-13	< 9	21	11	10	12	-6	<7
7	-50	52	22	-22	23	13	2	6
8	- 9	20				14	-10	6
9	25	26		h06		15	-6	8
10	14	16	0	-58	48	16	4	6
11	21	20	1	-4	< 8	17	13	9
12	-8	<8	2	30	31			
13	-45	45	3	-10	9		$h 07$	
14	11	9	4	7	10	1	- 1	< 5
15	29	35	5	4	< 8	2	-10	7
16	-14	18	6	-48	40		2	<5
17	14	10	7	-6	< 8	4	3	<5
18	21	18	8	12	8	5	22	11
19	-15	16	9	-17	13	6	-2	< 4
20	4	<6	10	-9	<7	7	-35	23
			11	12	9	8	-7	< 4

The final parameters for the selenium and carbon atoms are given in Table 2; the probable errors in these parameters are $0.005 \AA$ for the selenium atoms (from least-squares residuals) and $0.05 \AA$ for the carbon atoms (estimated).

In the final temperature factor, $B=2.32 \times 10^{-16}$ $\mathrm{cm} .^{-2}$ was used. As an indication of the agreement between calculated and observed structure factors, reliability factors, $R=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \div \Sigma\left|F_{o}\right|$, were calculated. The values obtained were $0 \cdot 155$ for $h k 0$ data and $0 \cdot 162$ for $h 0 l$ data, using all observed reflections. These values are close to those found in other organoselenium structure determinations. Values of calculated and observed structure factors are given in Table 3.

Discussion of the results

The important bond distances and angles, together with estimated probable errors (obtained from leastsquares residuals for the $\mathrm{Se}-\mathrm{Se}$ distances) are given in Table 4.

Table 4. Bond distances and angles in diphenyl diselenide

Distances (\AA)		Angles (degrees)	
$\mathrm{Se}-\mathrm{Se}^{\prime}$	$2 \cdot 29 \pm 0.01$	$\mathrm{Se}-\mathrm{Se}^{\prime}-\mathrm{C}_{1}^{\prime}$	$107 \cdot 5 \pm 2 \cdot 0$
$\mathrm{Se}-\mathrm{C}_{1}$	1.93 ± 0.05	$\mathrm{Se}^{\prime}-\mathrm{Se}-\mathrm{C}_{1}$	$104 \cdot 6 \div 2 \cdot 0$
$\mathrm{Se}^{\prime}-\mathrm{C}_{1}^{\prime}$	1.93 ± 0.05	'Dihedral'	$82 \cdot 0 \pm 3 \cdot 0$

$\mathrm{Se}^{\prime}-\mathrm{C}_{1}^{\prime} \quad 1.93 \pm 0.05$
$\mathrm{Se}-\mathrm{Se}^{\prime}$ (non-bonded) $\quad 3.73 \pm 0.01$
$\mathrm{Se}^{\prime}-\mathrm{Se}^{\prime}$ (non-bonded) $3 \cdot 88 \pm 0.01$
The selenium-selenium bonded distance of $2.29 \AA$ is $0.05 \AA$ shorter than twice the assigned single-bond radius for selenium, and compares with the values of $2 \cdot 32 \AA$ found in hexagonal selenium and $2 \cdot 34 \AA$ found in α-monoclinic selenium; it is the author's belief that the shortening is significantly greater than the experimental error in the present determination. On the other hand, the average selenium-carbon distance of $1.93 \AA$ is in close agreement with the value of $1.94 \AA$ predicted from the sum of the single-bond radii for carbon and selenium, although the relatively large
experimental error in the carbon parameters introduces a corresponding uncertainty in the observed bond lengths. In 1,4-diselenane, carbon-selenium distances of $2.01 \pm 0.05 \AA$ were observed, which represents an increase of $0.07 \AA$ above the predicted value; in diarylselenium dihalides, values of about $1.94 \AA$ were observed. It is apparent that the single-bond radius of selenium is rather fluid, and further investigations are necessary for a true understanding of the situation.

The non-bonded selenium-selenium distances of $3 \cdot 73$ and $3.88 \AA$, although significantly less than twice the assigned van der Waals radius of $2.0 \AA$, are in agreement with the values found in α-monoclinic selenium; these values ranged from 3.53 to $3.99 \AA$. The dihedral angle between the $\mathrm{C}_{1}-\mathrm{Se}-\mathrm{Se}^{\prime}$ and $\mathrm{Se}-\mathrm{Se}^{\prime}-\mathrm{C}_{1}^{\prime}$ planes is close to the predicted value of 90° (Pauling, 1949).

I should like to express my thanks to Prof. J. D. McCullough for his interest in and criticism of this work, as well as for providing the impetus for the undertaking.

References

Burbank, R. D. (1951). Acta Cryst. 4, 140.
Carpenter, G. B. \& Donohue, J. (1950). J. Amer. Chem. Soc. 72, 2315.
Egartner, L., Halla, F. \& Schacherl, R. (1932). Z. phys. Chem. B, 18, 189.

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
Marsh, R. E. \& McCullough, J. D. (1951). J. Amer. Chem. Soc. 73, 1106.
McCullough, J. D. \& Hamburger, G. (1941). J. Amer. Chem. Soc. 63, 803.
McCullough, J. D. \& Hamburger, G. (1942). J. Amer. Chem. Soc. 64, 508.
McCullough, J. D. \& Marsh, R. E. (1950a). Acta Cryst. 3, 41.
McCullofge, J. D. \& Marsh, R. E. (1950b). J. Amer. Chem. Soc. 72, 4556.
Pauling, L. (1948). The Nature of the Chemical Bond. Ithaca: Cornell University Press.
Pauling, L. (1949). Proc. Nat. Acad. Sci., Wash. 35, 495.

